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Optimized portfolios and the impact of
estimation error



Optimized portfolios

Since Markowitz (1952), quantitative investors have constructed
portfolios with mean-variance optimization.

A simple quadratic program given a � and a covariance matrix †.
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The impact of estimation error

In practice, optimization relies on an estimate of the mean and
covariance matrix (b† estimates †).

Estimation error leads to two types of errors:

• You get the wrong portfolio: Estimation error distorts
portfolio weights so optimized portfolios are never optimal.

• And it’s probably risker than you think: A risk-minimizing
optimization tends to materially underforecast portfolio risk.

We measure both errors in simulation.
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Measuring the impact of estimation
error in simulation



Measuring errors in weights

(Squared) tracking error of an optimized portfolio bw measures its
distance from the optimal portfolio w�:

T2bw D .bw � w�/
>† .bw � w�/

Tracking error is the width of the distribution of return differences
between w and bw.
Ideally, tracking error should be as close to 0.
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Measuring errors in risk forecasts

Variance forecast ratio measures the error in the risk forecast as:

Rbw D
bw>b†bwbw>

†bw
This is a ratio of the estimated portfolio risk over the actual risk of
the estimated minimum variance portfolio bw.
Ideally, the variance forecast ratio should be as close to 1.

5



Error metrics in simulation

In simulation (given a model for †),

• generate security returns and compute w� using †,
(† is accessible in simulation)

• estimate † by b† from observed returns and compute bw,
• measure the error metrics T2bw andRbw .
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Minimum variance



Why minimum variance?

Theory

Error amplification: Highly sensitive to estimation error.

Error isolation: Impervious to errors in expected return.

Insight into a general problem: Informs our understanding of how
estimation error distorts portfolios and points to a remedy.

Practice

Large investments: For example, the Shares Edge MSCI Min Vol
USA ETF had net assets of roughly $14 billion on Sept. 8, 2017.
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True and optimized minimum variance portfolios

The true minimum variance portfolio w� is the solution to:

min
x2RN

x>†x

x>1N D 1 :

In practice, we construct an estimated minimum variance
portfolio, bw, that solves the same problem with b† replacing †.
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Factor model & PCA



One-factor security returns model

The return generating process for N securities is specified by

R D �ˇ C �

where � is the return to a market factor, ˇ is the N -vector of
factor exposures, � is the N -vector of diversifiable specific returns.

The .�; �/ are latent variables. We observe T i.i.d. returns to N
securities, i.e., R1; R2; : : : ; RT .
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One-factor model covariance matrix

When the � and � are uncorrelated (as we assume), the security
covariance matrix can be expressed as

† D �2ˇˇ>
C �;

where �2 is the variance of the market factor and the diagonal
entries of � are specific variances, ı2.

Assumption 1. �2=N ! �1 2 .0;1/ and � D ı2I.

Assumption 2. fRi gT
iD1 are i.i.d. with R1 � N.0;†/.

Assumption 3. ˇ always has some dispersion.
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Estimation error in factor models

In practice, we have only the estimates O� , Ǒ and Oı.

b† D O�2 Ǒ Ǒ>
C b�

We measure the errors in estimated parameters, of course.

But our focus is how errors in parameter estimates affect portfolio
metrics: (squared) tracking error and variance forecast ratio.
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Factor model estimation with PCA

PCA: compute the sample covariance matrix S and set:

• Ǒ – first eigenvector of S,

• O�2 – largest eigenvalue of S,

• Oı2 – OLS regression of returns on the estimated factor.

PCA approximates true factors well for N large and b† D †.

Sample eigenvectors behave differently for N large and T fixed
(i.e., in the N " 1 and T fixed asymptotic regime).

Current techniques adjust only the eigenvalue O�2 (typically biased
upward). No (direct) corrections of Ǒ are available!
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The dispersion bias



PCA bias (recent results on sample eigenvectors)

Let �
ˇ; Ǒ be the angle between ˇ and its PCA-estimate Ǒ.

Recent results (e.g. Shen, Shen, Zhu & Marron (2016)) under our
assumptions state that (N " 1)

cos � Ǒ;ˇ
!  �1

T (1)

almost surely for a (non-degenerate) random variable  T > 1.
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No reference frame to detect eigenvector bias
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PCA bias characterization

Let ´ D 1N =
p
N (a vector on the unit N -sphere).

This is the unique (up to negation) dispersionless unit vector.

Theorem

Let Ǒ be a PCA-estimate of ˇ. Then,

cos �ˇ;´
a:s:
�  T cos � Ǒ;´

.N " 1/: (2)

In words, � Ǒ;´
is larger than �ˇ;´ with high probability for N large.
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PCA bias illustration
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Error metrics for the minimum variance portfolio

Define 
x;y D x>y (on unit sphere 
x;y D cos �x;y) and

Ex D


ˇ;´ � 

ˇ; Ǒ
 Ǒ;´

sin � Ǒ;´

: (3)

The variableE drives all the error in our metrics.

We prove,E Ǒ > 0 for the PCA-estimate Ǒ.
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Error metrics for the minimum variance portfolio

As N " 1, (for any Ǒ such that infN E2
Ǒ
> 0)

T2bw �

�2E2
Ǒ

sin2 � Ǒ;´

Rbw �

Oı2N�1

�2E2
Ǒ

: (4)

Remarkable: No dependence on the eigenvalue estimate O�2!
(above, �2 D �2=N )
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Bias correction



Dispersion bias correction

We propose a correction Ǒ� of the form,

Ǒ�
/ Ǒ C �´ � 2 R :

We consider two estimators (i.e., values of �)

�1 D


ˇ;´ � 
 Ǒ;´

 Ǒ;ˇ


 Ǒ;ˇ
� 
 Ǒ;´


ˇ;´

.oracle, E Ǒ� D 0/: (5)

�2 D

q
 Ǒ;´

1 � .q
 Ǒ;´
/2
.q � q�1/ .data-driven, E Ǒ� � 0/: (6)

where q is computed from observed data only.
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Dispersion bias correction
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Dispersion bias correction
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Main result

Theorem
Under our assumptions, the oracle estimator achieves

Rbw a:s:
� Oı2=ı2 T2bw a:s:

� O.N�1/ : (7)

Several complementary results available in paper (online).
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Numerical results



Calibrating the one-factor model

Parameter Value Comment


ˇ;´ 0:5–1:0 controls dominant
factor dispersion

�2 (roughly) the dominant
eigenvalue of †

annualized factor
volatility is 16%

ı2 specific variances
on diagonal of �

annualized specific
volatilities drawn

uniformly on Œ10%; 64%�
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Numerical results (
ˇ D 0:90 and varying N )

Simulation based on 50 samples
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Numerical results (
ˇ;´ D 0:90 and varying N )

Simulation based on 50 samples
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Numerical results (N D 500 and varying 
ˇ;´)

Simulation based on 50 samples
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Numerical results (N D 500 and varying 
ˇ;´)

Simulation based on 50 samples
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Summary

We provided a novel characterization of a systematic (dispersion)
bias in PCA factors (sample eigenvectors).

– applicable in many other settings.

Developed and tested oracle and data-driven corrections to
mitigate this dispersion bias (distinct from literature).

Our results can be viewed as an extension and formalization of
ideas that have been known by practitioners since the 1970s.
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Some past approaches

Plug-in estimates b†:

• sample covariance matrix
– underforecasts risk by factor .1 �N=T /C

• covariance regularization

• low-dimensional approximation (factor model)

• bayes/shrinkages estimates (structured model)

Also, bootstrap resampling and stochastic optimization.

Factor models form our starting point.



Factor models and equity markets

Beginning with the development of the Capital Asset Pricing
Model (CAPM) in (Treynor 1962) and (Sharpe 1964), factor
models have been central to the analysis of equity markets.

In a fundamental model, human analysts identify factors.
Fundamental models have been widely used by equity portfolio
managers since (Rosenberg 1984) and (Rosenberg 1985).

In a statistical model (such as PCA, factor analysis, etc), machines
identify factors. An enormous academic literature on PCA models
has descended from (Ross 1976).

PCA is the focus of our analysis.
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